FX-14™ Tapeouts Using GF ASIC Design Methodology
Michael Amundson, Paul Zuchowski, Tim Helvey
Company Highlights

REVENUE

- Approx. $6B* Revenue

MORE THAN

- 25,000 Patents & Applications
- 250 Customers
- 18,000 Employees

FAB LOCATIONS

- Burlington
- East Fishkill
- Dresden
- Malta
- Singapore

FAB CAPACITY

- 300mm Trusted Foundry
- 200mm 200K Wafers/Mo
- 200mm 133K Wafers/Mo

*Based upon analysts' estimates
Global Manufacturing Capacity: ~7M Wafers/Yr*

- **East Fishkill, New York**: 14,000 (300mm)
- **Malta, New York**: Up to 60,000 (300mm)
- **Burlington, Vermont**: 40,000 (200mm)
- **Dresden, Germany**: 60,000 (300mm)
- **Singapore**: 68,000 (300mm), 93,000 (200mm)

TECHNOLOGY
- 90nm–22nm
- 28nm, ≤ 14nm
- 350nm–90nm
- 45nm–22nm
- 180nm–40nm

CAPACITY IN WAFERS/MONTH
- 14,000 (300mm)
- Up to 60,000 (300mm)
- 40,000 (200mm)
- 60,000 (300mm)
- 68,000 (300mm), 93,000 (200mm)

200mm Equivalents
IBM ASIC Business Model (pre-divestiture)

- 20+ years producing first-time-right silicon
- Significant player in the ASIC market
 - Limited fab volume
 - Bulk of customers in wired/wireless networking space
- Netlist handoff or turnkey or services
 - Usually a netlist handoff
 - Sometimes a joint or customer-owned Place/Route
- Test insertion/verification
 - Test insertion RC, then Encounter Test
- Place/Route
 - using IBM EDA tools
- Timing Signoff
 - using IBM EDA tools
 - customer delivers signoff constraints in IBM EinsTimer™ format
IBM ASIC Methodology (pre-divestiture)

• Utilize IBM technologies
 – 14nm SOI in 2013 timeframe
• Interaction with IBM Server
 – Commonality where possible
 – ASIC more flexible than Server
• Heavy dependence upon internal IBM EDA tools
 – Synthesis (limited)
 – Place and Route
 – Timing signoff
• Commercial tool usage in Synthesis, Simulation, Test, and Physical Verification
• Packaged into a robust IBM GUI application, built on flows defined in XML
IBM ASIC Design Phases (RTx)

• RTA: Release To Analysis
 – Early netlist drop, what-if analysis

• RTF: Release To Floorplanning
 – Partially complete netlist, begin detailed floorplanning
 – Exercise placement, cts, routing in an experimental fashion

• RTP: Release To Preliminary
 – Mostly complete netlist, longest phase
 – Complete all steps needed for tapeout (at reduced quality)

• RTL: Release To Layout
 – Final netlist, use learning from RTP to produce a tapeout ready design

• RTC: Release To Checking
 – Submit the shapes to the process engineering team for final assembly
Divestiture to GLOBALFOUNDRIES

- Announced in October 2014, completed in July 2015
- Transition away from IBM EDA tools
 - Reduce dependency upon IBM EDA
 - Utilize improvements found in commercial tools
 - Some Cadence RC/EDI experience from 45/32/14nm
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IBM ASIC</td>
</tr>
<tr>
<td>2</td>
<td>GF ASIC</td>
</tr>
<tr>
<td>3</td>
<td>GF ASIC Design Methodology</td>
</tr>
<tr>
<td>4</td>
<td>Tapeout Experiences</td>
</tr>
</tbody>
</table>
FX-14™ ASIC Builds on Continued Industry Leadership

Decades of experience partnering with industry leaders to enable network transformation

11 consecutive years as top ASIC supplier for wired communications*

Successfully enabled, designed & released some of industry’s most complex ASICs

Outstanding record of enabling first-pass design success

Access to industry-leading experts for continued pipeline of innovation

*Gartner, 2004-2015; includes IBM Microelectronics rankings.
FX-14™ ASIC Offering

Design system is available now

Intellectual Property
64-bit & 32-bit ARM® cores, 56G SERDES, world-class embedded TCAM & SRAM

Technology
Cost-effective, leading-edge 14LPP technology for differentiated performance, power & area

Scale
High-capacity, state-of-the-art semiconductor manufacturing facility

Design Enablement
Industry-standard EDA tool suite and proven, best-in-class design methodology
GF ASIC Business Model

- Utilize proven Test/Timing experience for first-time-right silicon
- Significant player in the ASIC market
 - Increased fab volume (order of magnitude)
 - Broader scope and customer base going forward
- Netlist handoff or turnkey or services
 - Broader focus for ASIC, COT services, etc
 - Same RTx design phases for “typical” ASIC designs
- Test insertion/verification
 - using RC/Genus 15.2, Encounter Test 15.1
- Place/Route
 - using Innovus 15.2
- Timing Signoff
 - using Tempus 15.2
GF ASIC Methodology

• Utilize GF technologies
 – e.g., FX-14™

• Commercial tools

• Methodology add-ons (“secret sauce”)
 – Test
 – Clocking
 – Timing signoff
 – Place and Route

• Wrapped in GF framework

• Several tapeouts and in-flight designs
1. IBM ASIC
2. GF ASIC
3. GF ASIC Design Methodology
4. Tapeout Experiences
Full transition to commercial tools

- RC/Genus
 - test insertion
 - synthesis (internal)
- Innovus Place/Route
 - Transitioned from EDI in July 2015
- Quantus Extraction
- Tempus Timing
 - Including TSO
- Encounter Test
 - no change
- Voltus
- Conformal
- NCsim
 - no change
GF Methodology Framework (dflow)

- GF ASIC team is multi-disciplined using various tools and flows
 - Hundreds of designers from PnR, Timing, Test, IP, Physical Verification, etc
 - Converge on a single, light-weight framework that works for everyone (tool agnostic)
- Develop in-house solution
 - Least cost, most flexible, easiest to support
 - Built initial PnR flow using Foundation Flow Tcl as a guide
- dflow = “Design Flow”
 - Flexible control interface (parms) and extensible architecture
 - Local or batch submission
 - Consistent log, netlist, report management
 - Robust Tcl API to support a variety of EDA tools
 - Built-in design data analytics (see later slide)
 - No GUI, robust script interface for highest productivity
GF Methodology Framework (dflow)

- dflow (perl)
- methodology recipe (tcl)
- GF Tcl API
- EDA tool

GF Methodology
Design Team
EDA vendor
GF Methodology Framework (dflow)

dfconfig.tcl parms

def::parm project.name 'ChipX'
def::parm tech.name 'fxt4'
def::parm tech.version 'rel2.5'
def::parm tech.path '/rules/[def::parm -name tech.name]/[def::parm -name tech.version]'
def::parm tech.dips [list
 sc gt hvt c16 latest
 sc gt rvx c14 latest
 sc gt lvt c16 latest
 support cells latest
 technology files latest
]
def::parm pd.path [list . /projects/ChipX/incoming /projects/ChipX/pdl]
def::parm pd.power_nets [VDD VCS]
def::parm pd.power_nets [VDD VCS VDD02 VDD03] design=TopLevel
dflow Design Analytics

- dflow gathers statistics for each step
 - store into a MySQL database

- Various utilities to “mine” the data
 - Progress/chart view for project managers and leads
 - Detailed statistics for engineers
Methodology Focus Areas

• First priority
 – Test
 – Clocking
 – Timing signoff

• Second priority
 – Floorplanning
 – Place and Route
Test Advantages in FX-14™

<table>
<thead>
<tr>
<th>Design for Test Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>- DFT insertion with Industry-Standard Mux scan</td>
</tr>
<tr>
<td>- Robust DFT Verification and automated Test Pattern Generation performed by GF</td>
</tr>
<tr>
<td>- Physically-Aware Test Compression and scan insertion minimize layout impacts</td>
</tr>
<tr>
<td>- Out-of-Context DFT for re-use at all hierarchy levels</td>
</tr>
<tr>
<td>- Hierarchical Test for partitioned test generation and testing</td>
</tr>
<tr>
<td>- Partial Good Test for yield improvement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Competitive Fault Coverage (>99% stuck fault, >85% at-speed)</td>
</tr>
<tr>
<td>- Transition Faults detected by At-Speed-Structural-Test (ASST)</td>
</tr>
<tr>
<td>- ASST utilizes both Launch off Capture (LOC) and Launch off Scan (LOS) for higher coverage</td>
</tr>
<tr>
<td>- On-Product clock generation allows for tests to be performed at functional speeds</td>
</tr>
<tr>
<td>- RAM Sequential Test (At-speed testing of Array Interfaces)</td>
</tr>
<tr>
<td>- IDDQ, voltage stress, min Vdd, Temp Sensitivity</td>
</tr>
<tr>
<td>- Automated Diagnostics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IP Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Automated DFT & ATPG for embedded IP</td>
</tr>
<tr>
<td>- At-speed Memory BIST (RTL Insertion, Synthesis, Verification, and Pattern migration)</td>
</tr>
<tr>
<td>- Support for Advanced SerDes testing, including PRBS and Eye Quality verification</td>
</tr>
<tr>
<td>- Analog / Mixed Signal Test capabilities</td>
</tr>
<tr>
<td>- IEEE 1687 Support for IP testing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In-system Test Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>- IEEE 1149.1 automation (Interconnect, Memory BIST, Optional internal access)</td>
</tr>
<tr>
<td>- IEEE 1149.6 automation (Advanced Interconnect)</td>
</tr>
</tbody>
</table>
Clocking

- Low skew for higher speed clocks
 - Structured Clock Buffer (SCB)
 - Drive SCB nets on highest layers
 - Traditional tree after 1-3 levels of SCB
 - Lowest variation, easier to close timing

- Traditional tree for lower speed clocks
 - Test clocks, other low speed functional clocks

- Useful skew
 - Limit to 50ps
 - Avoid in pre-CTS (for now)
Timing

• Transition from IBM statistical timing, but maintain competitive edge
 – Broad expertise in advanced nodes
 – Enable 2D interpolation (next page)
 – Enhanced waveform modeling

• Timing views
 – 4 timing views for pre-CTS
 – 20 timing views for CTS, post-CTS, post-route opt
 – 60 views for signoff

• On-the-fly view definition
 – Design team expects easy migration to latest inputs
 • Timing constraints – functional and DFT
 • Timing library versions
 • Operating conditions
 – dflow automatically replaces the database view information
Timing – interpolation

- Support for customer specific voltage and temperature conditions
- Tempus and Innovus support 2D interpolation
- Interpolation backed by Tempus to Spectre analysis
Floorplanning

• Bump creation and bump interconnect routing
• Macro-aware MIMCAP insertion
• Robust power routing
 – Flexibility to accommodate consumer designs
• IEEE-1801 (UPF) support
• Snapshot files (DEF)
 – Restore physical constraints for next iteration
 – Port assignment, macro placement, etc
Place and Route

• place_opt_design
 – Custom scan enable (SE) latch cloning for ASST timing
 – Scan XOR insertion for enhanced Test debug
 – Test mux attractions for improved timing
 – Pre-placed array Test logic for improved timing

• Signal Routing
 – NanoRoute modes tuned for FX-14™ with help from Cadence
 – routeDesign by default, can split as needed

• Custom Place and Route Checks
 – Additional checks to align with methodology/technology requirements
Managing the Innovus DB

• LEF / Lib links
 – Full link resolution locks in the DB during first init_design
 – Harder to upgrade when new IP arrives
 – Custom hook migrates to latest LEFs during restoreDesign

• Restore using –mmmcFile
 – Utilize on-the-fly view definition
 – Ensure the desired Lib/QRC are used, not the links in the DB

• Always write full DEF (except chip top)

• Extra files written into the DB
 – LEF for the block (used by parent)
 – NSE (non-standard extensions) for custom block properties (used by parent)
 – Tag information used by promotion (next slide)
Managing the Innovus DB (promotion/collection)

- Promote Innovus DBs to a central location
 - Many versions of all blocks and top level
- Collect a set of promoted DBs
 - No new data, just links
 - Easy for next step to pick-up (e.g., Timing)
- Utilizes DB “tags” to align with design analytics
 - Build analytical pedigree from a promoted DB
1. IBM ASIC
2. GF ASIC
3. GF ASIC Design Methodology
4. Tapeout Experiences
14nm Tapeouts

- Many customer tapeouts using GF 14LPP foundry process
- Several recent tapeouts using FX-14™
 - Innovus 15.15, Tempus 15.15
- Many in-flight designs using FX-14™
 - Innovus 15.22, Tempus 15.22
Block A

- 2.5M instances
 - 74 macros
- 500MHz, complex clocking
- Floorplan to post-route in 100 hours
 - 25h, place/pre-cts
 - 25h, cts
 - 15h, post-cts
 - 10h, routing
 - 25h, post-route
Challenges

• Growing pains
 – It’s all in the details

• Bleeding edge tools
 – Always using latest-and-greatest tool versions
 – Required many engineering builds
 – saveTestcase does not always reproduce the problem

• Concurrent Design/IP/Methodology development
 – Significant improvements from lessons learned on early designs

• Timing Closure
 – 60+ views versus 2-3 statistical runs in EinsTimer™
 – Getting to 100% done
 – Transition fails not fixed, out-of-bound fails, etc…
Successes

• Transition by GF ASIC team
 – New company, technology, tools, and methodology
 – Massive change in a short period of time
 – Cadence help was key to successful enablement

• Fast Prototyping
 – Ability to quickly run through routing for early feedback

• Runtime of construction flow
 – Improved place/opt/route runtime to lower TAT in RTx phases

• Cadence AE team
 – Worked nights/weekends to solve critical issues

• Cadence education
1. IBM ASIC
2. GF ASIC
3. GF ASIC Design Methodology
4. Tapeout Experiences
Q & A