Body-Bias Scaling for GLOBALFOUNDRIES 22FDx Technology
New Dimension to Explore the Design

Ramya Srinivasan
Tamer Ragheb
GLOBALFOUNDRIES

March 30-31, 2016
SNUG Silicon Valley
Introducing 22FDX technology and platform
Body-Biasing: A New Dimension in Design Closure
Why we need Body-Bias Interpolation
PrimeTime solution for Body-Bias Interpolation
Results:
 Accuracy vs Characterized libraries
Conclusion
Agenda

Introducing 22FDX technology and platform
Body-Biasing: A New Dimension in Design Closure
Why we need Body-Bias Interpolation
PrimeTime solution for Body-Bias Interpolation
Results:
 Accuracy vs Characterized libraries
Conclusion
GLOBALFOUNDRIES 22FDX Technology

Bulk versus FDSOI

• What is 22FDX technology?
 – It is the new 22nm Fully Depleted Silicon-on-Insulator (FDSOI) technology from GLOBALFOUNDRIES

• Delivers FinFET-like performance and power-efficiency at 28nm cost

• Integrated RF for reduced system cost and back-gate feature to reduce RF power

• Enables applications across mobile, IoT and RF markets

Effects of Body Biasing in Bulk Transistor and FDSOI Transistor
GLOBALFOUNDRIES 22FDx Technology

Why 22FDx Technology?

- **Body-biasing Provides Greatest Design Flexibility**
 - Enables Body Bias (BB) with minimal leakage impact
 - Forward body-bias (FBB) enables low voltage operation
 - Reverse body-bias (RBB) enables low leakage
- **Improve within die or die-to-die uniformity**
- **Lower Leakage due to insulator layer**
- **FDSOI variability is smaller across die due to lower doping effort**
- **Dynamic body-biasing enables active tradeoff of performance vs. power**
 - Software-controlled transistor body-biasing for flexible trade-off between performance and power
 - Post-silicon tuning/trimming
Body-biasing
Power/Performance Trade-off

- Max Frequency
- Leakage Power
- Maximum Performance Operating Mode
- Forward Body-bias (FBB)
- Reverse Body-bias (RBB)
- Minimum Leakage in Standby Mode
GLOBALFOUNDRIES 22FDX Technology

RBB versus FBB

- Bias voltage is applied to P-well and N-well

- Reverse Body Bias (RBB)
 - raising VT of device
 - nMOS neg. substrate voltage, pMOS pos. substrate voltage

- Forward Body Bias (FBB)
 - lowering VT of device
 - nMOS pos. substrate voltage, pMOS neg. substrate voltage
Agenda

Introducing 22FDX technology and platform

Body-Biasing: A New Dimension in Design Closure

Why we need Body-Bias Interpolation

PrimeTime solution for Body-Bias Interpolation

Results:
 - Accuracy vs Characterized libraries

Conclusion
What is Body-biasing?
A New Dimension in Design Closure

• Substrate biasing is a low power technique
 – For tuning performance and static power consumption of a CMOS device
• Body-biasing applied through voltage variation on PWELL and NWELL terminal
• Same implementation can be timed with different Bias voltages resulting in different performance results
• Different Body-Biasing domains on one chip are enabling new design architectures and design styles
• Due to the variation in Body Bias as a new variable, now the corners are PVTB (Process/Voltage/Temperature/Body Bias)

PVT + BIAS \rightarrow PVTB
Body-Biasing:
A New Dimension in Design Closure

- Requirements for static timing analysis on designs with well-biasing
 - Design using libraries with bias library cells
 - Cells with exposed bias PG pins
 - UPF contains specific bias related statements
 - Bias power domain
 - Bias supply nets
 - Forward or reverse biasing as applicable

- Recommend asymmetric BB (available in INVECAS libraries):
 - Reduction of 4X leakage
 (Nwell is more leaky)
 - Performance is almost the same
 (more balanced)
Body-Biasing: A New Dimension in Design Closure

- **Voltage map:**
 Additional entries for bias voltages at N-Well and P-Well

- **Power pins:**
 Additional pin definitions for N-Well and P-Well

```plaintext
voltage_map (VDD, XX);
voltage_map (VNW_N, 1);
voltage_map (VPW_P, -2);
voltage_map (VSS, 0);

pg_pin (VNW_N) {
  pg_type : nwell;
  physical_connection : device_layer;
  voltage_name : "VNW_N";
}
pg_pin (VPW_P) {
  pg_type : pwell;
  physical_connection : device_layer;
  voltage_name : "VPW_P";
}
```
Body-Biasing:
A New Dimension in Design Closure

• Static vs Dynamic Body-Biasing techniques:
 – Static: Need BB value optimization prior to implementation
 – Dynamic: Can use BB optimization on the spot after implementation

<table>
<thead>
<tr>
<th>Corner</th>
<th>VDD</th>
<th>BIAS</th>
<th>Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>VDD-10%</td>
<td>0V/-1V</td>
<td>-40C</td>
</tr>
<tr>
<td>SS</td>
<td>VDD-10%</td>
<td>0V/-1V</td>
<td>125C</td>
</tr>
<tr>
<td>FF</td>
<td>VDD+10%</td>
<td>0V/-1V</td>
<td>-40C</td>
</tr>
<tr>
<td>FF</td>
<td>VDD+10%</td>
<td>0V/-1V</td>
<td>125C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corner</th>
<th>VDD</th>
<th>BIAS</th>
<th>Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>VDD-10%</td>
<td>0V/0V</td>
<td>-40C</td>
</tr>
<tr>
<td>SS</td>
<td>VDD-10%</td>
<td>0V/-1V</td>
<td>125C</td>
</tr>
<tr>
<td>FF</td>
<td>VDD+10%</td>
<td>0V/0V</td>
<td>-40C</td>
</tr>
<tr>
<td>FF</td>
<td>VDD+10%</td>
<td>0V/-1V</td>
<td>125C</td>
</tr>
</tbody>
</table>
Body-Bias Flow

Usage flow with scaling libraries

• Scaling groups are created using the libraries at different bias-voltages.

• Libraries characterized at different voltages are grouped together to be used in the design for scaling

• set link_path "* Lib1-0.72V-m40c-0-0.db"

• define_scaling_lib_groups “Lib1-0.72V-m40c-0-0.db Lib1-0.72V-m40c-0-M1.db Lib1-0.72V-m40c-0-M2.db Lib1-0.72V-m40c-1-0.db Lib1-0.72V-m40c-1-M1.db Lib1-0.72V-m40c-1-M2.db"
Body-Bias Flow
Usage flow with scaling libraries

- Define the connectivity to the bias PG pins
 - set_voltage 0.72 -min 0.72 -object_list VDD
 - set_voltage 0 -min 0 -object_list VSS
 - set_voltage 0.5 -min 0.5 -object_list NET_BIAS_VNW
 - set_voltage -1.0 -min -1.0 -object_list NET_BIAS_VPW

- STA Settings
 - waveform propagation enabled
 - SI analysis turned off
 - PBA Mode

- Primetime version
 - K-2016.06 (Beta version)
Body-Bias Scaling Validation

- Bias voltage scaling is validated with spice accuracy correlation for uncoupled path delay
- Bias scaling validated for the 9 points (orange points)
- Bias interpolation validated with different combinations of scaling libraries (blue points)
- Blue points are pre-characterized points
- For each body-bias value (orange points) STA and spice correlation was carried out with:
 - All 6 libraries (all blue points)
 - 5 libraries
 - 4 libraries
 - 3 libraries

![Delay Scaling with Body-Bias]
Validation Methodology
Primetime Simulation Link

- **Primetime Simulation Link**
 - perform path-based uncoupled SPICE analysis
 - The SimLink commands supports the body bias voltage in SPICE deck generation
- **Synopsys FineSim - 2015.06-SP1-4**

```
sim_setup_library

sim_setup_simulator

Select paths for correlation (PBA)

sim_validate_path

Post process correlation results
```

Perform path-based uncoupled SPICE analysis on a specified path segment and compares the simulation results against the static timing results.
Testcase setup

- Testcase: falcon_neon (part of ARM Cortex-A9)
- Cell-count: 150K (std-cells)
- Setup Analysis with PBA mode
- Forward-Bias Mode
- Placement Utilization: 65%
- Library: 8T CNRX
- Metal Stack: 8M layers
- PNR MCMM Scenarios
 - TT.0P80V-0P0V-0P0V.25C_FuncCmax
 - TT.0P80V-0P0V-M1P0V.25C_FuncCmax
 - TT.0P80V-1P0V-M2P0V.25C_FuncCmax
- Cell Types: wcl and wcs
Implementation Details
Place & Route with ICC

- Based on Multi-Voltage aware Synopsys reference scripts
 - UPF and bias-specific scenario settings same as for synthesis
- Floorplan includes
 - Additional physical cells to support Bias-Supply from external
 - Voltage-Areas for each Bias-Domain
- Power Planning Includes Bias-Routes
- Fill Insertion has to be
 - Bias-Domain aware / VT aware
- Special NDR Rules on Bias-Nets
 (HV rules)
- CNRX Placement
 - To reduce the layout dependent effects

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Abut</td>
<td>Abut</td>
</tr>
<tr>
<td>D</td>
<td>Abut</td>
<td>Spacing</td>
</tr>
</tbody>
</table>
Implementation Details
Place & Route with ICC: Floor/Power-Planning

• Bias Tap-Cells
 – Supply N- Wells and P-Wells with Bias-Voltages from an external source
 – Are ideally placed in columns so minimize routing overhead due to additional Bias-Straps
 – Have to fulfill maximum distance rules between each other

• Bias-Routes
 – Connect NW and PW separately from VDD and VSS mesh
 – BB mesh connection using UPF flow
 – Provide Bias-Voltages to Bias-Tap-Cells
 – Can be connected to a on-die Bias-Voltage generator
Results

Bias Scaling correlation to SPICE with 3 libraries

- To get the best accuracy using ONLY the 3 libraries provided by Invecas GLOBALFOUNDRIES recommends body bias scaling along the purple line.
Results
Bias Scaling Correlation to SPICE with 4 libraries

- For better accuracy, use the 4 corner libraries if available to cover the VNW/VPW scaling space.
Results

Bias Scaling Correlation to SPICE with 6 libraries

- For best accuracy (Synopsys Recommendation), use the 6 corners libraries if available to cover the VNW/VPW scaling space

![Graph showing bias scaling correlation to SPICE with 6 libraries](image)
Results

Bias Scaling correlation to SPICE with 3 libraries

- To get the best accuracy using ONLY the 3 libraries provided by Invectas GLOBALFOUNDRIES recommends body bias scaling along the purple line

```
Results
Bias Scaling correlation to SPICE with 3 libraries

- To get the best accuracy using ONLY the 3 libraries provided by Invectas GLOBALFOUNDRIES recommends body bias scaling along the purple line

falcon_neon FBB: Bias Scaling at VNW:0.0V and VPW:-0.5V

VNW

0,0 1,0
0.0V,-0.5V

VPW

0,1 1,-1
0,-2 1,-2
```
Results
Bias Scaling Correlation to SPICE with 4 libraries

- For better accuracy, use the 4 corner libraries if available to cover the VNW/VPW scaling space
Results

Bias Scaling Correlation to SPICE with 6 libraries

• For best accuracy (Synopsys Recommendation), use the 6 corners libraries if available to cover the VNW/VPW scaling space
Results Summary

- Bias scaling analysis with 6 libraries (Synopsys Recommendation) correlates very closely to SPICE with maximum percentage error close to 2.5%
- Bias scaling with 4 libraries may be a reasonable compromise with acceptable percentage of error – depending on the customer max error target
- Using the current Invecas offering (3 libraries), bias scaling is possible ONLY along the purple line if the amount of error is acceptable to customer
- Bias scaling accuracy can be different from one library to another – Customer/IP vendor optimization of # of characterized library vs max error
Conclusion

• Body Bias Interpolation algorithm works accurately in PrimeTime:
 – Accurate correlation seen between Scaled STA runs with 6 libraries vs SPICE
• Synopsys recommendation is to use 6 libraries for body-bias scaling in STA flows
• GLOBALFOUNDRIES will deploy the Body-Bias scaling capability in Primetime in the Digital reference flows
• Future work: GLOBALFOUNDRIES is working with Synopsys to include BB Interpolation in upstream tools “ICC/ICCII”
Thank You