算力功耗比mW/GigaHash:加密货币挖矿专用芯片转向22FDX

作者: Dave Lammers

我之前写的几篇博客探讨了在物联网汽车雷达应用中使用22FDX®工艺技术,这些应用市场都要求实现高性能和低功耗。加密货币挖矿是另一个功耗性能举足轻重的市场,因此,挖矿机逐渐放弃GPU,改用专用芯片(ASIC)。

关于半导体行业,比较有趣的一点是:每种应用都需要不同的性能、功耗、成本,以及其他因素的组合。加密货币挖矿应用亦不例外,甚至主流货币——比特币莱特币以太坊——以及其挖矿方式也是如此。

anshel sag biographyMoor Insights & Strategy的助理分析员Anshel Sag在跟踪分析货币挖矿市场的状况后,表示矿工“不想购买任何额外的逻辑片上组件。他们希望尽可能降低功耗。每项都达到极简状态,因为很大程度上都归结于功耗问题。”

Sag表示,每种不同的算法都代表“一种不同的瓶颈,因此需要按照不同的方式架构ASIC,尽可能减少瓶颈。”(Sag和Moor的首席分析师Patrick Moorhead撰写了一篇晶圆厂和加密货币挖矿机白皮书,就此进行了详细阐述。)

“每天消耗的能源如此之多,挖矿行业和制造商一直都在研究其ASIC挖矿机的效率。大部分挖矿设备都以hash/watt为单元测量其‘性能’,而非测量其总体的hash功能。” 资料来源:Moor Insights & Strategy白皮书:“晶圆厂在加密挖矿行业的重要性”

架构差异

Sanjay Charagulla——格芯技术营销和业务开发部门的资深总监,概述了针对比特币、莱特币和以太坊而优化的挖矿机ASIC之间的差异。莱特币ASIC倾向于采用相对较少部分的逻辑晶体管,SRAM约占晶体管总数的三分之二。Charagulla认为格芯的22FDX工艺拥有“最高效的SRAM位单元之一”,并将其归为格芯“已为多位客户设计完成流片”的原因。

以太坊挖矿约占整个挖矿IC市场的10%,因此至今一直由图形处理器(GPU)主导市场。以太坊算法需要大量的外部存储器,且芯片尺寸也更大。Charagulla表示,他预测以太坊挖矿将增长到市场的25%,因为相对比特币而言,其整体商务技术能够提供更高的交易灵活性。

尽管新货币种类层出不穷,比特币仍是市场的主导加密货币——挖矿机一般具备多个PCB板,每块板上都包含50-100多个ASIC。这些微小的ASIC都是逻辑器件,每个芯片上都有数百个累加运算(MAC)电路,无需采用外部存储器或协处理器。而且,如果有几个内核不能正常工作,ASIC仍然能够正常运行。“比特币ASIC没有这么复杂,其布局和后端设计是影响效率的关键”,他表示。

对于挖矿机而言,功耗成本如此重要,因此在测量效率时,以mW/Gigahash为单位测量,而不只是测算总体的Hash算力。主流的挖矿供应商Bitmain采用98mW/GigaHash的比特币挖矿机,新竞争者们都尝试达到或超越该水平。“我们有多位客户参与,有几位已经进行流片,其结果相当不错”,Charagulla说道。

Image 2

加密货币挖矿生态系统——垂直整合 资料来源:格芯

卓越的性能

我问过Charagulla,能否通过提高ASIC的频率和承担额外的功耗来加快挖矿机进入区块链下一板块的速度。他回复说,为了让挖矿机内部的热流保持最优水平并节省功率,明智的做法是“以最低的功率,按照合理的400-500 MHz频率”运行ASIC。

尽管有些比特币ASIC开始转而采用基于FinFET的工艺,Charagulla建议,最好是采用基于FD-SOI的FDX工艺,让制造成本和功耗保持较低水平,同时保持足够的性能。“可以按照某种频率,同时运行数千个内核,这样仍然能够解决问题。基本来说,内核一般包含多个XOR栅极和16位宽的数据路径,在有限空间内布局。我们相信,22FDX能够满足这一要求。FinFET的优势在于具备千兆赫时钟速度、更宽的总线和位加法逻辑。这种情况(比特币ASIC)下并不存在任何高速I/O,所以,如果您可以优化内核的布局,FD-SOI将可以媲美FinFET,且其成本更低。”

许多客户设计都采用FDX工艺,工作电压仅0.4V。Charagulla表示,“一家客户”正尝试将工作电压降低至0.3 Vdd,以便为挖矿机提供更低功耗的80毫瓦/Gigahash的ASIC,同时“仍然能够高效运行其算法”。背栅偏置和正向偏置可用于满足性能和功率规格要求,他补充说道。

产能限制

Moor Insights的分析师Sag表示,虽然有些“高级”ASIC挖矿机将继续采用领先的FinFET工艺,其他挖矿机可能改变方式。“FinFETs在价格更加高昂的节点上能提供更高的性能,但需要支付更高成本。随着挖矿ASIC开始遵循更小巧的设计规则,晶圆的价格也随之增高。目前,人们希望降低挖矿机的成本,通过薄利多销的方式实现更多利润。最初采用领先的节点时,例如10nm或7nm,其产出并不是最高。采用领先节点时,其成本相对更高。”price impact

此外,挖矿芯片设计公司在“争夺晶圆厂的产能,这是让成本走高的另一个原因”,Sag表示。

格芯位于马耳他、纽约的晶圆厂采用基于FinFETs的14nm和即将推出的7nm工艺几乎满负荷运行,Sag表示,挖矿公司都将德累斯顿提供的22FDX产能视作契机。此外,由于超过6家挖矿机设备制造商都位于中国,Sag表示“22FDX可能很快会在中国投入使用。”

Sag表示“在为正确的客户选择正确的工艺方面,格芯表现出色,这对他们而言非常重要。并非每个芯片都需要数十亿个FinFET晶体管。就价格敏感性以及高能效需求而言,22FDX具有重要意义。”

Moor Insights白皮书中指出“格芯的FDX路线图将于2019年和2020年实现扩展,涵盖12nm FDX,其功耗更低,性能更高,且更加节省成本。我们相信,这种工艺的扩展将让挖矿机大幅受益。芯片的制造成本对于最终能否成功越来越重要,尤其是当比特币和其他加密货币挖矿ASIC公司开始以尽可能加大产量为目标的时候。”

Charagulla表示,德累斯顿工厂提供的产能正不断吸引新挖矿机公司采用22FDX。“马耳他晶圆厂几乎已达到全部产能,德累斯顿晶圆厂显然是面向22FDX,随后将是12FDX。在毫米波射频领域,我们面向基站、移动手持设备和毫米波雷达的设计正不断取胜。对于挖矿机ASIC,FDX能够提供附加价值,因此,更多的新客户会选择格芯。”

关于作者

Dave Lammers
Dave Lammers是固态技术特约撰稿人,也是格芯的Foundry Files的特约博客作者。他于20世界80年代早期在美联社东京分社工作期间开始撰写关于半导体行业的文章,彼时该行业正经历快速发展。他于1985年加入E.E. Times,定居东京,在之后的14年内,足迹遍及日本、韩国和台湾。1998年,Dave与他的妻子Mieko以及4个孩子移居奥斯丁,为E.E Times开设德克萨斯办事处。Dave毕业于美国圣母大学,获得密苏里大学新闻学院新闻学硕士学位。