PDK:实现硅晶设计一次性成功的关键要素

撰文:Gary Dagastine

在汽车等对故障零容忍的应用领域中,集成电路(IC)变得越发复杂,愈加重要,为此,准确建模和验证IC设计在给定应用中的性能和可靠性,是当前急需具备的重要能力。这种能力是实现硅晶设计一次性成功的关键,也是工艺设计套件(PDK)这种低调的实用工具如今备受关注的原因所在。

PDK是一组描述半导体工艺细节的文件,供芯片设计EDA工具使用。客户会在投产前使用晶圆厂的PDK,确保晶圆厂能够基于客户的设计生产芯片,保证芯片的预期功能和性能。

格芯®(GLOBALFOUNDRIES®)努力保障客户能使用PDK快速而经济地创建针对特定应用的IC,发挥格芯差异化技术平台提供的独特优势。

格芯设计实现副总裁Richard Trihy表示:“PDK是我们与客户之间的主要接口与重要触点,因为如果客户无法在格芯PDK中找到达成功耗、性能与面积(PPA)目标的方法,他们就不会与我们合作。”

他说:“仅去年一年,我们就发布了数百个不同的PDK,充分证明了格芯的解决方案不仅功能丰富,还高度差异化。但考虑到PDK可能有几百GB大,包含数以万计的文件,所以我们也力求在我们的不同技术平台上实现标准化接口,让PDK更加灵活、更具交互性,更易于下载和使用。”

在Trihy的领导下,格芯去年从多个方面推进了PDK研发工作,包括:扩充格芯设计与工程团队的规模和职能,使之能在整个设计过程中充分配合客户;执行战略投资,比如并购Smartcom的125人PDK工程团队;开发符合应用需求的差异化PDK功能;扩展格芯的合作伙伴生态系统。

PDK中包含什么?

在格芯PDK中,包含以下内容:

  • 技术文件 – 描述相关设计规则与设计规则检查工具;  
  • 参数化单元(PCell) – 描述晶体管(及其他器件)的可能定制方法,供设计师在EDA工具中使用;
  • 寄生参数提取及版图与原理图对照文件 – 描述半导体器件,供EDA工具识别版图中的器件并在网表中准确呈现;
  • 器件型号 – 描述模拟中用到的所有无源和有源器件(如晶体管)的电气行为。 

除此之外,PDK中还包含很多其他组件技术文件,例如布局与布线、填充、EM/IR、电磁模拟和需要额外支持的专业EDA工具。另外,有多家EDA供应商提供彼此竞争的工具,而格芯设计支持部门的部分工作就是为客户需要的各种工具提供支持。

Trihy称:“有两个要素对我们的设计支持与PDK交付工作至关重要。第一个关键要素是质量保证(QA)。PDK QA团队不仅要验证PDK的每个组件是否准确无误,还要验证工具间的接口和总体设计流程是否正确且恰当。” 

他表示:“第二个关键要素是一系列参考流程和设计指南,用于描述设计流程如何运作,并为客户提供建议,帮助客户利用PDK取得理想结果。作为参考流程的一部分,我们的团队会与EDA供应商密切协作,确保格芯差异化技术背后的所有主要特性都在工具中得到支持。”

Trihy解释道,随着芯片设计在功能层面变得日益复杂,设计方法指南也变得越来越重要。高度集成的片上系统(SoC)设计包含收发器、计算、模拟和非易失性存储模块,需要相应的参考流程加以辅助。

Trihy称:“模块级协同设计和2.5D/3D封装正逐渐成为晶圆厂的一大竞争优势,而作为开发合作伙伴,EDA供应商在助力PDK突破芯片层面上发挥着重要作用。出于对信号完整性和热管理的需求,需要使用协同设计方法和支持性CAD工具,且必须涵盖上至毫米波频率的各种工作条件。这是一个非常活跃的开发领域,从长远来看,将在我们的PDK中创建新的内容与结构。而此类挑战对辅助文档和上手指南提出了新的要求。”

格芯移动和无线基础架构业务部门副总裁Peter Rabbeni表示:“我们与生态系统合作伙伴紧密协作,确保格芯的PDK不仅与主流EDA供应商的设计软件无缝接合,也兼容其他常用的第三方工具集。例如,电磁模拟器是毫米波IC设计的关键,我们的客户在电磁模拟器方面会有很多选择,我们的生态系统合作伙伴也会与我们密切合作,将这些电磁模拟器集成进我们的PDK中。”

深入分析可靠性

相比于传统的数据处理应用,任务关键型应用要求对IC性能与可靠性进行更为深入的分析,因而如今的设计师在设计高度集成的复杂IC时面临诸多挑战。

准确建模是关键,因为材料、工艺和封装的可变性,外加寄生现象和加速老化等二次电效应的作用,都会严重影响可靠性。如果PDK无法让设计师就可变性对设计的影响进行充分建模,那按照此设计最终产出的芯片,可能不会在所有条件下都按预期运行,还可能会过早老化和出现意外故障。

此外,晶圆厂的PDK必须确保良好的模型到硬件关联(MHC),让客户能够“所模拟即所得”。格芯企业应用工程组总监Kenneth Barnett表示:“一次性完成硅晶设计是我们的一贯目标,因为客户的芯片越快通过认证,制造成本就越低,也能更快进入市场。然而,纵观整个行业,认证失败依然是个老大难问题。”

他说:“我们经过努力,成为了一次性完成硅晶设计的佼佼者。如今,依托行业先进的射频、可靠性和热耦合模型,我们能够提供出色的MHC成果。我们还创建了一系列参考流程,帮助客户更好地理解怎样使用格芯的差异化技术设计复杂应用的IC,从而提升了我们的一次性成功率。这些参考设计使用各种格芯技术平台构建,包括用于5G/毫米波和卫星通信应用的45RFSOI解决方案,以及用于移动处理器和无线联网、IoT及汽车市场的22FDX® FD-SOI解决方案。”

格芯还不断向自身PDK中加入创新知识产权。格芯的90nm 9HP锗硅(SiGe)解决方案就是一个很好的例子。格芯设计实现团队的技术专家Adam DiVergilio提到了公司新开发的一个算法,这个算法可供设计师使用9HP平台对高度复杂的模型库进行基于可靠性的模拟。“我们的生态系统合作伙伴Cadence在其RelXpert可靠性模拟器中融入了对我们架构的支持,因而现在能够在我们的硅锗PDK中更高效地支持可靠性模拟。”

射频/毫米波的独特优势

据Barnett介绍,格芯的22FDX平台具有良好的通用性,称得上是芯片技术界的“瑞士军刀”。他说:“22FDX为用户提供强大的处理能力,凭借背栅偏置功能,22FDX平台可针对高性能或低功耗使用场景加以调整,良好适应需要模拟/混合信号片上系统的各种应用,因而有了‘瑞士军刀’的美誉。为此,我们得向客户提供尽可能好的PDK,让客户能够充分利用这些功能。”

Barnett举出了在22FDX中对射频/毫米波应用IC设计进行建模和验证的例子。这些应用因为涉及复杂的物理特性,理解起来很困难,但这正代表了格芯的核心竞争力,建立在收购IBM微电子业务所获得的几十年经验基础之上。

Barnett称:“我们PDK中内置的格芯知识产权,让我们的客户能够创建优良的解决方案。例如,在无线通信应用中,格芯22FDX平台用到的PDK,就使客户能够创建功率放大器(PA)与前端集成的解决方案,从而提高输出功率,降低LAN噪声,大幅改善链路预算。”

Peter Rabbeni称,格芯射频/毫米波应用模型的品质非常优异。“我们模型的工作频率高于典型值,高达110 GHz,因为在高频上捕捉器件运行状况很重要。我们使用多年来开发的一套专用方法,在持续改进的过程中,利用物理测试站点将我们的模型与实际测量相关联。”

因此,他表示,格芯PDK使客户能够更容易地适应射频/毫米波设计领域正在经历的重大变迁。5G基础设施的新型大规模多入多出(MIMO)和相控阵系统就是个很好的例子。与之前的系统采用单一信号链不同,这些系统采用了多个功率放大器和信号链来聚合和增强辐射能量信号。由于功率分布在很多元件而非单个元件上,如今这一增强辐射功率的新方法令硅晶成为了砷化镓(GaAs)或氮化镓(GaN)基系统的有力竞争者。

Rabbeni称:“为了从阵列获取优异性能,客户需要知道每个元件可被驱动的程度,但如果没有我们PDK提供的精准可靠性和长效模型,可能不得不在非理想条件下操作PA器件以确保其可靠性。而在这种情况下,为达到预期性能,有可能需要过度设计系统,添置更多PA,导致成本和功率预算大幅增加。”